- Clearfield, A., Warner, D. K., Saldarriaga-Molina, C. H., Ropal, R., & Bernal, I. (1975). *Can. J. Chem.* 53, 1622–1629.
- Engelhardt, L. M., Papasergio, R. I., Raston, C. L. & White, A. H. (1984). Organometallics, 3, 18–20.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gallucci, J. C., Gautheron, B., Gugelchuk, M., Meunier, P. & Paquette, L. A. (1987). Organometallics, 6, 15–19.
- Halterman, R. L. (1992). Chem. Rev. 92, 965–994.
 Irngartinger, H., Deuter, J., Charumilind, P. & Paquette, L. A. (1989).
 J. Am. Chem. Soc. 111, 9236–9237.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
- Molecular Structure Corporation (1989). TEXSAN. TEXRAY Structure Analysis Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1992). MSC/AFC Diffractometer Control Software. Version 4.3.0. MSC, 3200 Research Forest Drive. The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1995). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Moriarty, K. J., Rogers, R. D. & Paquette, L. A. (1989). Organometallics, 8, 1512–1517.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Paquette, L. A., Bauer, W., Sivik, M. R., Bühl, M., Feigel, M. & Schleyer, P. von R. (1990). J. Am. Chem. Soc. 112, 8776–8789.
- Paquette, L. A., Charumilind, P., Kravetz, T. M., Böhm, M. C. & Gleiter, R. (1983). J. Am. Chem. Soc. 105, 3126–3135.
- Paquette, L. A., Künzer, H., Green, K. E., De Lucchi, O., Licini, G., Pasquato, L. & Valle, G. (1986). J. Am. Chem. Soc. 108, 3453– 3460.
- Paquette, L. A., Moriarty, K. J., McKinney, J. A. & Rogers, R. D. (1989). Organometallics, 8, 1707-1713.
- Paquette, L. A., Moriarty, K. J., Meunier, P., Gautheron, B., Sornay, C., Rogers, R. D. & Rheingold, A. L. (1989). Organometallics, 8, 2159–2167.
- Paquette, L. A., Moriarty, K. J. & Rogers, R. D. (1989). Organometallics, 8, 1506–1511.
- Paquette, L. A. & Shen, C.-C. (1990). J. Am. Chem. Soc. 112, 1159-1164.
- Paquette, L. A. & Sivik, M. R. (1992). Organometallics, 11, 3503– 3505.
- Paquette, L. A., Sivik, M. R., Bauer, W. & Schleyer, P. von R. (1994). Organometallics, 13, 4919–4927.
- Parthasarathi, V., Beurskens, P. T. & Slot, H. J. B. (1983). Acta Cryst. A39, 860–864.
- Rogers, R. D., Sivik, M. R. & Paquette, L. A. (1993). J. Organomet. Chem. 450, 125–135.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Sivik, M. R., Rogers, R. D. & Paquette, L. A. (1990). J. Organomet. Chem. 397, 177–185.
- Sornay, C., Meunier, P., Gautheron, B., O'Doherty, G. A. & Paquette, L. A. (1991). Organometallics, 10, 2082–2083.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.
- Stewart, R. F., Davidson, E. R. & Simpson, W. T. (1965). J. Chem. Phys. 42, 3175–3187.
- Zaegel, F., Gallucci, J. C., Meunier, P., Gautheron, B., Bzowej, E. I. & Paquette, L. A. (1995). Organometallics, 14, 4576–4584.

Acta Cryst. (1997). C53, 1420-1422

Bis(nicotinamide-N)bis(salicylato-O,O')copper(II), the Monoclinic Form

Ivan Leban,^a Bojan Kozlevčar,^a Joachim Sieler^b and Primož Šegedin^a

^a Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, PO Box 537, SLO-1001 Ljubljana, Slovenia, and ^bInstitut für Anorganische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leizpig, Germany. E-mail: ivan.leban@uni-lj.si

(Received 21 January 1997; accepted 22 April 1997)

Abstract

The monoclinic form of the title compound, $[Cu(C_7H_5-O_3)_2(C_6H_6N_2O)_2]$, was isolated during the systematic synthesis of copper salicylates. A distorted octahedral coordination around Cu^{II}, located on the centre of symmetry, is formed by four carboxylic O atoms from two salicylate ligands [Cu—O 1.928 (2) and 2.766 (2) Å] and by two N atoms from two nicotinamide groups [Cu—N 2.022 (2) Å]. Monomeric structural units are linked together *via* hydrogen bonds of the type N— $H \cdots O$ between the N and O atoms of the nicotinamide ligands.

Comment

The crystal structure of the orthorhombic form of the title compound, (I), [Cu(sal)₂(nia)₂] (where sal is salicylate, $C_7H_5O_3^-$, and nia is nicotinamide, $C_6H_6N_2O$), along with a survey of similar complexes have been reported previously by Hoang, Valach & Melnik (1993). The orthorhombic compound crystallizes in space group *Pbca* (No. 61) with four stoichiometric $C_{26}H_{22}CuN_4O_8$ moieties in the unit cell. The orthorhombic form was prepared from Cu(sal)₂.4H₂O and nicotinamide in methanol. The single crystals were obtained on cooling the mixture to 268 K for 24 h. However, monoclinic crystals precipitate from a mixture of acetonitrile and methanol solution of the same starting components at room temperature. The monoclinic crystals have a distinctly different powder-diffraction pattern compared with the orthorhombic crystals.

The monomeric monoclinic complex with the atomic numbering scheme and hydrogen bonding is depicted in Fig. 1. The distorted octahedral coordination around the Cu^{II} atom is formed by two O atoms from salicylate moieties and two pyridine N atoms of nicotinamide groups [at 1.928(2) and 2.022(2) Å, respectively] and by two O atoms from salicylate groups at a greater distance of 2.766(2) Å. The overall coordination is nearly the same as found in the orthorhombic form (Hoang, Valach & Melnik, 1993) and is similar to that in bis(benzoato)bis(nicotinamide)copper(II) (Leban. Segedin & Gruber, 1996). The corresponding values found in the orthorhombic form are: Cu-O1 1.935 (6), Cu—O2 2.609 (6) and Cu—N1 1.994 (7) Å. There exists significant elongation of the Cu-O2 bond lengths in the monoclinic form which could be attributed to the intramolecular hydrogen bond $O2 \cdots H5 - O3$. However, in bis(benzoato)bis(nicotinamide)copper(II), the two Cu—O distances [2.180(3) and 2.209(3) Å] do not differ significantly.

Fig. 1. ORTEPII (Johnson, 1971) view of the molecular linking with the atomic numbering scheme. Anisotropic displacement ellipsoids for non-H atoms are drawn at the 20% probability level.

ety with respect to the Cu(sal)₂ moiety and also a slight change in the interplanar angle between the planes defined by atoms O1, O2, C1, C2 (carboxylate group) and C2, C3, C4, C5, C6, C7 (benzene ring) is observed. The interplanar angle is $8.0(3)^{\circ}$ in the orthorhombic form and $4.7(2)^{\circ}$ in the monoclinic form.

Experimental

Cu(sal)₂.4H₂O (0.80 g) was added to a mixture of 40 ml acetonitrile and methanol (5:1). The mixture was stirred for 15 min and filtered. The filtrate was added to a solution of nicotinamide (0.48 g) in 6 ml of the same solvent as above. Red-violet crystals were filtered after 6 d. Calculated for [Cu(sal)₂(nia)₂]: Cu 10.9, C 53.6, H 3.82, N 9.63%; found: Cu 11.2, C 53.3, H 3.40, N 9.43%. *d* spacings (Å), with relative intensities in parentheses (*III*₀): 8.7 (3), 7.6 (5), 7.4 (5), 7.15 (2), 5.88 (6), 4.40 (2), 4.35 (1), 4.22 (7), 3.73 (8), 3.68 (10). The powder pattern was obtained by Guinier de Wolf camera–II Enraf–Nonius (Cu K α radiation) (Kozlevčar, Fajfar, Petrič, Pohleven & Šegedin, 1996). The crystals were sealed in glass capillaries.

Crystal data

 $[Cu(C_7H_5O_3)_2(C_6H_6N_2O)_2]$ $M_r = 582.02$ Monoclinic $P2_1/n$ a = 10.834 (1) Å b = 9.750 (1) Å c = 12.381 (1) Å $\beta = 99.00 (1)^\circ$ $V = 1291.7 (2) Å^3$ Z = 2 $D_x = 1.496 \text{ Mg m}^{-3}$ $D_m = 1.49 (5) \text{ Mg m}^{-3}$ D_m measured by flotation in hexane/CCla

Data collection

Nonius CAD-4 diffractometer Variable rate $\theta/2\theta$ scans Absorption correction: none 5720 measured reflections 2337 independent reflections 2003 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.081$ S = 1.0882337 reflections 222 parameters All H atoms refined $w = 1/[\sigma^2(F_o^2) + (0.0183P)^2 + 1.2159P]$ where $P = (F_o^2 + 2F_c^2)/3$ Mo $K\alpha$ radiation $\lambda = 0.71073$ Å Cell parameters from 25 reflections $\theta = 10-12^{\circ}$ $\mu = 0.903$ mm⁻¹ T = 293 (2) K Plate $0.25 \times 0.23 \times 0.12$ mm Red-violet

 $R_{int} = 0.023$ $\theta_{max} = 26.25^{\circ}$ $h = -13 \rightarrow 8$ $k = -11 \rightarrow 11$ $l = -14 \rightarrow 15$ 3 standard reflections frequency: 180 min intensity decay: 2.0%

 $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.272 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.244 \text{ e } \text{\AA}^{-3}$ Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U^{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	z	U_{eq}
Cu	0	0	1/2	0.03582 (14)
01	-0.1718 (2)	-0.0327 (2)	0.5160(2)	0.0454 (5)
O2	-0.0870 (2)	-0.1477 (2)	0.6634 (2)	0.0567 (5)
O3	-0.2191 (2)	-0.3281 (3)	0.7476 (2)	0.0686 (7)
CI	-0.1792 (2)	-0.1181(3)	0.5926 (2)	0.0410 (6)
C2	-0.3009 (2)	-0.1887 (3)	0.5925 (2)	0.0382 (6)
C3	-0.3136 (3)	-0.2918 (3)	0.6677 (2)	0.0455 (6)
C4	-0.4260 (3)	-0.3623 (4)	0.6614 (3)	0.0629 (9)
C5	-0.5240 (3)	-0.3293 (4)	0.5827 (3)	0.0741 (11)
C6	-0.5141 (3)	-0.2266 (5)	0.5084 (3)	0.0761 (12)
C7	-0.4025 (3)	-0.1582 (4)	0.5129 (3)	0.0556 (8)
O4	-0.2272 (2)	-0.5680 (2)	0.2826 (2)	0.0694 (7)
N1	0.0096 (2)	-0.1893 (2)	0.4352 (2)	0.0376 (5)
N2	-0.3092 (2)	-0.3592 (3)	0.2452 (2)	0.0556 (7)
C8	-0.0945 (2)	-0.2486 (2)	0.3817 (2)	0.0353 (6)
C9	-0.0969 (2)	-0.3783 (2)	0.3381 (2)	0.0375 (6)
C10	0.0139 (3)	-0.4515 (3)	0.3506 (3)	0.0554 (8)
C11	0.1216 (3)	-0.3913 (3)	0.4036 (3)	0.0615 (9)
C12	0.1156 (3)	-0.2616 (3)	0.4449 (3)	0.0488 (7)
C13	-0.2169 (3)	-0.4432 (3)	0.2852 (2)	0.0457 (7)

Table 2. Selected geometric parameters (Å, °)

Cu—O1	1.928 (2)	O3—C3	1.354 (3)
CuN1	2.022 (2)	C1—C2	1.487 (3)
Cu—O2	2.766 (2)	O4C13	1.222 (3)
01—C1	1.275 (3)	N2-C13	1.327 (4)
O2—C1	1.255 (3)	C9—C13	1.500 (3)
01—Cu—N1	90.01 (8)	O3—C3—C4	117.8 (3)
O1—Cu—O2	52.72 (7)	O3—C3—C2	122.4 (3)
N1—Cu—O2	81.91 (7)	C8C9C13	121.4 (2)
02—C1—O1	122.3 (2)	C10-C9-C13	120.6 (2)
O2-C1-C2	120.2 (3)	O4C13N2	122.9 (3)
01-C1-C2	117.4 (2)	O4-C13-C9	120.1 (3)
C7C2C1	120.3 (2)	N2C13C9	117.0 (2)
C3—C2—C1	120.9 (2)		

Table 3. Hydrogen-bonding geometry (Å, °)

D — $H \cdot \cdot \cdot A$	<i>D</i> H	H···A	$D \cdot \cdot \cdot A$	D-H···A
N2-H10···O4 ¹	0.83 (3)	2.07 (3)	2.895 (3)	173 (3)
$N2$ — $H11 \cdot \cdot \cdot O2^{n}$	0.80(3)	2.30 (3)	3.022 (3)	150 (3)
O3-H5···O2	0.87 (4)	1.79 (4)	2.588 (3)	151 (3)
Symmetry codes: (i)	$(1-\frac{1}{2}-x,\frac{1}{2}+x)$	$y, \frac{1}{2} - z;$ (ii	$(x - \frac{1}{2}, -\frac{1}{2})$	$-y, z-\frac{1}{2}.$

The space group $P2_1/n$ was deduced from the systematic absences. All H atoms were found in the difference electrondensity map and their positional and isotropic displacement parameters were fully refined. Final difference electrondensity map revealed a maximum and minimum at 0.272 and $-0.244 \text{ e} \text{ Å}^{-3}$, respectively. Calculations were performed on the standard PC 486/16MB.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: NRCVAX (Gabe, Le Page, Charland, Lee & White, 1989). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1971) and PLUTON (Spek, 1991). Software used to prepare material for publication: SHELXL93.

The financial support of the Ministry for Science and Technology, Republic of Slovenia, through grant J1-7313-103 is gratefully acknowledged.

© 1997 International Union of Crystallography Printed in Great Britain – all rights reserved Supplementary data for this paper are available from the IUCr electronic archives (Reference: KA1233). Services for accessing these data are described at the back of the journal.

References

- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Hoang, N. N., Valach, F. & Melnik, M. (1993). Z. Kristallogr. 208, 27-33.
- Johnson, C. K. (1971). *ORTEPII*. Report ORNL-3794, revised. Oak Ridge National Laboratory, Tennessee, USA.
- Kozlevčar, B., Fajfar, S., Petrič, M., Pohleven, F. & Šegedin, P. (1996). Acta Chim. Slov. 43, 385–395.
- Leban, I., Šegedin, P. & Gruber, K. (1996). Acta Cryst. C52, 1096– 1098.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Spek, A. L. (1991). PLUTON. Molecular Graphics Program. University of Utrecht, The Netherlands.

Acta Cryst. (1997). C53, 1422-1424

Diaquabis(dimethyl 3-oxopentanedioato- O^1, O^3)zinc(II)

JOHN FAWCETT, RAYMOND D. W. KEMMITT, DAVID R. RUSSELL AND KULDIP SINGH

Department of Chemistry, University of Leicester, Leicester LE1 7RH, England. E-mail: jxf@leicester.ac.uk

(Received 24 April 1997; accepted 4 June 1997)

Abstract

The molecular structure of the title compound, $[Zn(C_7H_9O_5)_2(H_2O)_2]$, shows the Zn atom coordinated by two monoanionic bidentate enolate ligands and two O atoms of water resulting in a pseudo-octahedral arrangement. The H atoms of the water molecules are oriented in such a way that one H atom forms an intramolecular hydrogen bond $[H6B\cdots O2(-x, -y, -z)]$, while the other H atom forms an intermolecular hydrogen bond $[H6A\cdots O3(1-x, -y, -z)]$. The intermolecular contacts link the molecules into stacks.

Comment

We have shown that esters of 3-oxopentanedioic acid RCH_2COCH_2R , (2), react with carbonato complexes